Advanced JavaScript
Debugging Techniques
for Agile Teams

Zach Gardner

HTML5/JavaScript Consultant
Keyhole Software
zgardner@keyholesoftware.com
@zachagardner

mailto:zgardner@keyholesoftware.com
mailto:zgardner@keyholesoftware.com

Titanium Sponsors

VALOREM

CONSULTING

WWW.VALOREMCONSULTING.COM

© REGISTER TO WIN AN XBOXI INTELLIGENT PAIRING. PERPETUAL SUCCESS.

ac IVE’ Sprint ep
qu SOLUTIONS GROUP DST = p ° SYSTEMS

svsTems PBalance g DevExpress

ac " hen Innovations
J & ASSOCIATES INC KauffmanLABS Jj-j
O RE I LLY for Enterprise Creation FREIGHTQUQOTE

. & Cerner (é cEnTHD]é‘%dg’;ﬁ el W T
' l [J LRE o e
Comerenone /l dSL P cohune G ARMII:I JQB/RNNS == Microsoft

KU = sovmmen s 2 e rohmnn @® OAKWOOD stackify

EDWARDS Transforming the way education works

CAMPUS C tlveso‘rtware - =
s, Percep womteman. @ TEKsysterns @ twilio @UNITEDLEX

CCCCCCCCCCCCCCCCCCC

Motivation

Successful Agile projects recognize the following:

1. Time = fuel
2. Developers write code and fix code

Validate Your Assumptions

The most fundamental principle behind debugging.

If you can list out your assumptions, you can be effectively debug.

Format

A pattern will be presented with the following:

1. Case study

2. Formal name

3. Elevator pitch

4. Detailed description
5. Use cases

6. Pros and cons

Breakpoint on Specific Condition

function somethinglmpoaEsiririsandaiemic)) |

My - trbrary.fireE gen=en s S, SCope) ;

My.llibrary.fireEvent = function (e, fn, scope) {
var listeners = this.listenerse];
1f fHNsiEenie s
12 IC U2 O

J

this.firelisteners(listeners, fn, scope);

Conditional Breakpoints

Only trigger a breakpoint when an internal or external expression
evaluates to true.

Most languages and IDEs have the concept of a conditional breakpoint.

Breakpoints can be set in the execution environment, or in the code
through use of the debugger statement.

Conditional Breakpoints

Funatyont myFunic E1on | (X
var something = new Class();
1f (x == 10) [dEslcVebilcreiicial-lun]

something.doSomething (x) ;

Conditional Breakpoints

Allowing the code to define breakpoints is preferable because:

Breakpoints sync up with code changes.

Can manage breakpoints between browsers.

Ensure the flow is correct while determining the fix.

Helps remind developers to fix all bugs before committing.

gmm s A

Conditional Breakpoints

Chrome and IE allow conditional breakpoints in Dev Tools:

Q, Elements Network | Sources | Timeline Profiles Resources Audits Console 2)=

[*] (index) app.Js extensions::unload_event ext-all-debug.js X
11166 for (i = 8, length = managedListeners.length; i < length; i++) {
11167 me.removeManagedListenerItem(false, managedListeners[i], item, ename
11168 }
11169
11170 },
11171
11172
11173 FireEvent: function(eventName) {
' rn this.fireEventArgs(eventName, arraySlice.call(arguments, 1));

Al
v

Continue to here

Remove breakpoeint

Edit breakpoint... tArgs: function(eventName, args) {

Disable breakpoint ;gar:ethiz\:entrlame .tolLowerCase();
11151 events = me.events,

11182 event = events && events[eventName],
11183 ret = true;

Conditional Breakpoints

When the expression evaluates to true, a breakpoint occurs:

Q, Elements Network | Sources| Timeline Profiles Resources Audits Censocle 2)= 4
(] (index) app.js extensions::unload_event ext-all-debug.js X
11166 for (i = 8, length = managedListeners.length; 1 < length; i++) {
11167 me.removeManagedListenerItem(false, managedlListeners[i], item, ename,
11168 }
11169 }
11170 },
11171
11172
11173 FireEvent: function(eventName) {
return this.fireEventArgs(eventName, arraySlice.call(arguments, 1));
The breakpoint on line 11173 will stop only if this expression is true:
console.log(eventName) && eventName == 'SOME_EVENT'
11175 },
11176
11177
11178 fireEventArgs: function(eventName, args) {
11179 eventName = eventName.tolowerCase();

111240

.
vrarm ma = +haco

Conditional Breakpoints

Some bugs only occur on the second or third time code is executed.

['ve used conditional breakpoints to get in those specific cases:

function shouldWork () {
window.ZG Shitwindew-lZGili T windemweas +~ 1 < 1) ;
1f (window.zG == 2) { debugger; }

doSomethingNormal () ;

Conditional Breakpoints

Best used when a well defined condition triggers a bug.

Some developers may prevent the triggering condition rather than the
root cause.

Not all bugs have well defined triggers.

JavaScript Needs Private/Protected

tuncdrontmyClas st
// Private
this.grivate =|123;
this.setPrivate ZEEhrCIEINCHNMNEHNNEINST N | opyew] valamll— x;]

return. fthig-

var goodClass = new myClass() ;

goodd] sgisifsie miRidniae el ihs IS EsI cle /e i

var badClass = new myClass();

badCllass.private 5 “Thiis is bad’”;

Observing Object Changes

Chrome can observe changes in the properties of an object.

Public/private/protected may be well documented, but other sections
of code may ignore the documentation.

This can cause errors to occur if getters and setters need to be called
to ensure consistency of a class.

By hooking into the places where the object changes, Chrome allows
the developer to see where the properties of an object are being
modified.

Observing Object Changes

tuncdrontmyClas st
var varToCheck = this.varToCheck;
this. define$etter (| {GEiEREEhHcEESEEERIRETON (V)

debugger;| varToChec ity s ymiitnis Vo Clieely /| | g
thist defineGel Motz Rl ity 11 SN O ||
retunn varToChEiel i

/A Do N el s ER (i

var badClass = new myClass();

badClass.varToCheck = 5; // Executes the debugger

Observing Object Changes

Can quickly track down the problem in a large code base if getting or
setting outside of the getter or setter is the cause.

The private variable may be several objects deep, or the containing
object may be redefined.

Tracking every getter can lead to noise.

Only works in Chrome.

Ever Debugged a Function Like This

drawAxis: function(init) { 5@ Ao (]) e W <] e) e
var chart = this.chart, sprite = surface.add({
surface = chart.surface, typeeitipachd;
bbox = chart.chartBBox, PA LRI CEN Fc I XPMconi<cravaMBIEIIA. ceniterX + rhol * cosi(i /1
store = chart.getChartStore(), o) p | CEMEEEY s mae w ghm(d /L~ i), 1%,
1 = store.getCount (), stroke: '#ccc'
centerX = bbox.x + (bbox.width / 2),) g
centerY = bbox.y + (bbox.height / 2), sprite.setAttributes ({
rho = Math.min (bbox.width, bbox.height) /2, hidden: false
sprites = [], sprite, i, CEUE) g
steps = this.steps, sprites.push (sprite);
il 9, a2 = NelEa, RIS 2 }
cos = Math.cos, sin = Math.sin; } else {
sprites = this.sprites;
if (this.sprites && !chart.resizing) ({ //draw circles
this.drawLabel () ; fer (i = 0p SEESEES e i) |
return; sprites[i] .setAttributes ({
} x: centerX,
g centerY
iisfemSlaElisie S SR ssE e Se) radius: Math.max(rho * (i + 1) / steps, 0),
//draw circles sigroke: '#eeel
for (i = 1; 14 siHeps;NEEREN }, true);
sprite = surface.add({ }
ez s Teplieelal //draw lines
x: centerX, tor (3 = Us 7 <sdbgegri)l
y: centery, sprites[i + j].setAttributes ({
radius: Math.max(rho * i / steps, 0), path: ['M', centerX, centerY, 'L', centerX + rho * cos(j / 1 *
Sieiselkeg Viieer! Pi2) , Eemitery 4 iwhe ¥ gida(y / L ® pid2), "%,
}); sizrokekMEcec)
sprite.setAttributes ({ }, true);
hidden: false }
}, true); }
sprites.push (sprite); this.sprites = sprites;

this.drawLabel () ;

Binary Search

Divide a function in two halves, and see which half produces the bug.

By segmenting a problem into two halves, the scope can quickly be
narrowed to focus in on the cause of the bug.

Once the offending segment is found, divide it into two halves.

The halves can be unequal, but it works best if they're close.

Binary Search

Works well when functions are very modular.
[f written well, can isolate offending code quickly.

Best used when you have no idea where the cause of the bug is.

Can lead to false positives.
Doesn’t guarantee results.

Can be time consuming if it is the only technique used.

Fn 1 calls Fn 2 calls Fn 3 calls...

funation primaryiundgt iRy el
Y sttt
secondaryFunction () ;

/Y i more | st

funct enlse condeain Eunic tatonis(), | {
/ /BB S

tertiaryFunction () ;

Bottom-up

Observe the effect of calling a function until the bug is observed.

In Bottom-up debugging, start with putting a debugger statement in
code that happens before the bug occurs.

Put a watch statement to check for the bug.

Step over a function, and see if the watch statement indicates the
function just called triggered the bug.

If it didn’t, go to the next.

If it did, restart the process, then step into the function.

Bottom-up

When a button was clicked, some code was causing redirecting to the
login page.

[listened for click, and added a watch expression:

Q, Elements Network Timeline Profiles Resources Audits Consocle

]

“ v Watch Expressions + C
Hit Ctrl+O to open a file ‘ document.location.href != 'index.html': true

¥ Scope Variables
: ¥ Breakpoints

' » DOM Breakpoints

: » XHR Breakpoints

: » Event Listener Breakpoints
: » Workers

Bottom-up

Can quickly isolate bug if working code is known, and if the bug can be
easily identified.

Doesn’t necessarily lead to finding true source of bug.
May lead to laziness when debugging.

Takes a long time to identify, restart, step into, identify, etc.

Function Incorrectly Called

function throwAnExedpt 40P

// Throw an exception

function cadlNFSHiRFOWARESEEED T 1 GHENEE]

throwAnException () ;

function somethingComplicated () {

callsThrowAnException () ;

Top-down

Find the cause of a bug when the symptom is well defined.

If a bug can be easily observed, the root cause needs to be determined.

It may be calling a function outside of the normal flow, or determining
the source of incorrectly shown HTML.

Top-down

Some widgets were rendering with a width and height of 0.

It was difficult to determine where width /height is calculated, so I
observed when the DOM attributes were changed:

PHP: Hypertext Preproces X

€« C' [3 www.php.net w Al =

User Group Events Q, | Elements | Network Sources Timeline Profiles Resources > 0301 > £ =9, x

¥ <div class="elephpants">

.
Special Thank v<a hi Add attribute 5/8637536@N04/10214270434" title=
pecial Thanks “Plele Edit attribute
<im 64, /91..0U8P8AV1/uB7a3s17ndl//20==">
okt F lement stat b
»<a hi orce element state $/91231247@N@2/9187378656" title=
"Two e
Copyright © 2001-2014 The PHP Group »<a hi Edit as HTML s/34519170@N@6/6152165137" title>
My PHP.net html.js.flexbox.fle: Copy as HTML iv.elephpants a img
Contact Styles | Properti Copy XPath rs
Other PHP.net sites element.style Delete node Show inherited
}
Ai - Inspect DOM properties
Mirror sites media="screen’ P prop

.....

cached
div.elephpanty

background-]] Attributes modifications
} Scroll into view

Privacy policy Subtree modifications

div.images 432px x 75px

Node removal

media="screen

cached v Word wrap h
div.elephpants arvrrmages™y
height: 75px;

..................

Top-down

Observing DOM changes is a quick way to see if the bug occurs.

Can also be done for exceptions ora throwina try/catch.

There may be so many valid DOM changes that the breakpoint
produces excessive noise.

Some bugs are very difficult to directly observe.

Not Obvious Issue

FUn e ien EHEHatlet i

gliert I was cligisccREa ==

function onRender (button) {

but t odiNehRE eGSR TGN | C LN

Event Listener Breakpoints

Observe how a existing code responds to a DOM event.

Chrome’s Dev Tools allow a developer to select which events they care
about.

When the event is executed, the developer can step through the calls
to find why it is working differently than they think it should.

Event Listener Breakpoints

By stepping through the code on click, I can find where my
assumptions fail:

Q, Elements Network | Sources | Timeline Profiles Resources Audits Console 2 = & O,
[*] (index) appjs | ext-all-debug.js X | » (] n -+t e @
11166 for (i =@, length = m | Watch Expressions + C
;;%22 . me.removeManagedLli » Call Stack
11169 } ‘ » Scope Variables
11170 P » Breakpoints
::_: » DOM Breakpoints
11173 }WI function(eventName) » XHR Breakpoints +
%%;Zi ‘ return this.fireEventArgs(|4 Event Listener Breakpoints
:ZZ%; " > Animation
77 - Control

fireEventArgs: functicn(eventh Cli
eventName = eventName.tolLc | ” ipboard

var me = this, I DOM Mutation
events = me.events,

event = events &% ever | ” Device
ret = true; - Keyboard
I Load
I Mouse
if (event && me.haslistene)
_ : : I Timer
ret = me.continueFiret
J I Touch
return ret;)
! I WebGL

» Workers

Event Listener Breakpoints

When a well defined condition is known, it’s easy to setup an event
listener breakpoint to find out exactly what’s going on.

This method makes it easy to narrow the focus on a large code base.

This can lead to Heisenbugs, and make it impossible to debug.

It can take a long time to find where an assumption is invalidated.

QA Best Practices

. Always turn on debuggers before testing

. When filing a bug, include as much information as possible:

a. What steps did you take to see the error?

b. What browser were you in when the error happened?

c. Can you provide a screenshot of the error?

d. Did the error show up in the developer tools?

. When you see a bug, repeat the process to make sure the exact
steps can be determined.

Conclusion

JavaScript is the wild west of development.
What can go wrong will go wrong.

Developers need to understand effective debugging patterns:

1. Conditional Breakpoints
2. Observing Object Changes
3. Binary Search

4. Bottom-up

5. Top-down

6.

Event Listener Breakpoints

